INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF CHEMISTRY
 CLASS XII
 CHAPTER - CHEMICAL KINETICS WORKSHEET - 11

1. Why does the rate of a reaction not remain constant throughout the reaction process?
2. The rate of a reaction is $1.2 \times 10^{-3} \mathrm{~L} / \mathrm{mol} / \mathrm{s}$. What is the order of the reaction?
3. Define the following terms :
a) Half-life of a reaction $\left(\mathrm{t}^{1} / 2\right)$
b) Rate constant (k)
4. A first order decomposition reaction takes 40 minutes for 30% decomposition. Calculate its $\mathrm{t}_{1 / 2}$ value.
5. Show that for a first order reaction, the time required for half the change is independent of initial concentration.
6. A reaction is first order in A and second order in B.
a) Write differential rate equation.
b) How is the rate affected when the concentration of A is tripled?
c) How is the rate affected when the concentration of both A and B are doubled?
7. An artifact containing wood has only 80% of the C^{14} activity found in a living tree. Estimate the age of the artifact if $\mathrm{t}_{1 / 2}$ of C^{14} is 5730 years.
8. The time required for 10% completion of a first order reaction at 298 K is equal to that required for its 25% completion at 308 K .if the value of A is $4 \times 10^{10} / \mathrm{s}$, calculate k at 318 K and Ea
9. (a) For a reaction $A+B \rightarrow P$, the rate is given by Rate $=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]$
(i) How is the rate of reaction affected if the concentration of A is doubled?
(ii) What is the overall order of reaction if B is present in large excess?
(b) A first order reaction takes 23.1 minutes for 50% completion. Calculate the time required for 75% completion of this reaction.
(Given : $\log 2=0.301, \log 3=0.4771, \log 4=0.6021$)
10. a) Explain the following terms:
i) Order of reaction
ii) Molecularity of a reaction
b) The rate of a reaction increases four times when the temperature changes from 300 K to 320 K . Calculate the energy of activation of the reaction assuming that it does not change with temperature. $\left(\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$
11. Time required to decompose $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ to half of its initial amount is 60 minutes. If the decomposition is a first order reaction, calculate the rate constant of the reaction.
12. The following results have been obtained during the kinetic studies of the reaction: $2 \mathrm{~A}+\mathrm{B} \quad \rightarrow \mathrm{C}+\mathrm{D}$

Experiment $\quad[\mathrm{A}] / \mathrm{M} \quad[\mathrm{B}] / \mathrm{M} \quad$ Initial rate of formation of $\mathrm{D} / \mathrm{mol} \mathrm{L}^{-1} \mathrm{~min}^{-1}$

I	0.1	0.1	6×10^{-3}
II	0.3	0.2	7.2×10^{-2}
III	0.3	0.4	2.88×10^{-1}
IV	0.4	0.1	2.4×10^{-2}

Determine the rate law and rate constant for the reaction.
13. For the decomposition of azoisopropane into hexane and nitrogen at 543 K , the following data were obtained. Calculate the rate constant.

$\mathrm{T}(\mathrm{sec}$	$\mathrm{P}(\mathrm{mm}$ of Hg$)$
0	35
360	54
720	63

