

INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF CHEMISTRY CLASS XII CHAPTER – CHEMICAL KINETICS WORKSHEET - 11

- 1. Why does the rate of a reaction not remain constant throughout the reaction process?
- 2. The rate of a reaction is 1.2×10^{-3} L/mol/s. What is the order of the reaction?
- 3. Define the following terms :
 - a) Half-life of a reaction $(t^{1/2})$
 - b) Rate constant (k)
- 4. A first order decomposition reaction takes 40 minutes for 30% decomposition. Calculate its $t_{1/2}$ value.
- 5. Show that for a first order reaction, the time required for half the change is independent of initial concentration.
- 6. A reaction is first order in A and second order in B.
 - a) Write differential rate equation.
 - b) How is the rate affected when the concentration of A is tripled?
 - c) How is the rate affected when the concentration of both A and B are doubled?
- 7. An artifact containing wood has only 80% of the C^{14} activity found in a living tree. Estimate the age of the artifact if $t_{1/2}$ of C^{14} is 5730 years.
- 8. The time required for 10% completion of a first order reaction at 298 K is equal to that required for its 25% completion at 308K.if the value of A is 4×10^{10} /s, calculate k at 318K and Ea
- 9. (a) For a reaction $A + B \rightarrow P$, the rate is given by Rate = $k[A]^2[B]$
 - (i) How is the rate of reaction affected if the concentration of A is doubled?
 - (ii) What is the overall order of reaction if B is present in large excess?
 - (b) A first order reaction takes 23.1 minutes for 50% completion. Calculate the time required for 75% completion of this reaction.

(Given : $\log 2 = 0.301$, $\log 3 = 0.4771$, $\log 4 = 0.6021$)

10. a) Explain the following terms:

- i) Order of reaction
- ii) Molecularity of a reaction

b) The rate of a reaction increases four times when the temperature changes from 300K to 320K. Calculate the energy of activation of the reaction assuming that it does not change with temperature. $(R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1})$

- 11. Time required to decompose SO_2Cl_2 to half of its initial amount is 60 minutes. If the decomposition is a first order reaction, calculate the rate constant of the reaction.
- 12. The following results have been obtained during the kinetic studies of the reaction: $2A + B \rightarrow C + D$ Experiment [A]/M [B]/M Initial rate of formati

[A]/M	[B]/M	Initial rate of formation
		of D/mol L^{-1} min ⁻¹
0.1	0.1	6 x 10 ⁻³
0.3	0.2	7.2 x 10 ⁻²
0.3	0.4	2.88 x 10 ⁻¹
0.4	0.1	2.4 x 10 ⁻²
	0.1 0.3 0.3	0.1 0.1 0.3 0.2 0.3 0.4

Determine the rate law and rate constant for the reaction.

^{13.} For the decomposition of azoisopropane into hexane and nitrogen at 543K , the following data were obtained. Calculate the rate constant.

T(sec	P (mm of Hg)
0	35
360	54
720	63
